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Deterministic cellular automata (CA) with additive rules are studied by 
exploiting the properties of circulant matrices on finite fields. Complete state 
transition diagrams for higher-order and multidimensional CA on finite lattices 
are analyzed. Conditions on the rules which make them reversible are obtained. 
It is shown that all state transition diagrams of the CA have identical trees 
rooted on cycles. General formulae for cycle lengths and multiplicities are given. 
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1. I N T R O D U C T I O N  

Cellular automata (CA) (~) are dynamical systems which consist typically of 
a regular array of variables each of which can assume a finite number of 
discrete values. The state of the CA, specified by the values of each of the 
variables at a given time, evolves temporally in discrete steps according to 
a given rule. CA have been used to model a variety of systems in physics, 
biology, and computer science. Despite their apparent simplicity, CA dis- 
play rich and complex behaviors usually studied numerically; the exact 
determination of the temporal behavior of CA is difficult, if not impossible. 
However, for a particular class of CA on finite lattices the time evolution 
can be studied analytically. This class of CA with additive rules (to be 
defined later) was studied by O. Martin et. al. (2) They gave an extensive 
analysis of the global behavior of such CA using properties of polynomials 
over finite fields. 

In this paper we describe a new algorithm to analyze additive CA 
based on the properties of circulant matrices. (3) Several results about the 
structure of the state transition diagrams of multidimensional and higher- 
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order CA are established�9 In particular, we show how the behavior of a pq- 
state (p is a prime, q any integer) additive CA in ddimensions on a finite 
lattice with periodic boundary conditions can be determined explicitly�9 
Conditions on rules which determine whether they are reversible or not are 
derived. CA with irreversible rules exhibit transient behavior before settling 
into periodic attracting sets (cycles). Cycle lengths, lengths of transients, 
multiplicities of cycles, and other properties are shown to be calculable for 
finite additive CA. 

This paper is organized as follows: In the following section we 
introduce our notation and prove some basic theorems. In Section 3, we 
analyze higher-order CA and illustrate the procedure of determining the 
state transition diagrams; higher-dimensional CA are treated in Section 4. 
Results for a CA in two dimensions for lattices of size up to 22 x 22 are also 
displayed. 

2. N O T A T I O N  A N D  P R E L I M I N A R I E S  

We begin by establishing notation and proving some basic theorems 
about circulant matrices employed frequently in the rest of the paper. For 
notational compactness, this section is restricted to one-dimensional CA. 

Consider a finite one-dimensional lattice with N sites (called cells, con- 
ventionally) and periodic boundary conditions. At each of the N sites there 
is a variable that assumes one of pq values belonging to a field K. (4) The 
state (configuration) of the CA at time t can be characterized by an N-com- 
ponent column vector ~(t), whose ith entry ~ri_l(t) is the value the i - 1  
site takes at time t. The definition of the CA is completed by specifying the 
rule according to which the state evolves in discrete time. In this paper we 
consider additive rules which have the following general form 

N 1 

o-i(t+l)= ~ ~jo-~+j(t) (2.1) 
j = 0  

where the coefficients {aj} belong to the same field K as do the ais. 
[Periodic boundary conditions imply a~+ N(t)= ai(t)]. Different choices for 
{aj} yield different rules. Additive CA are amenable to exact analysis 
because of the linearity of (2.1). It is useful to rewrite (2.1) as 
~( t+l )=A~( t ) ,  where the transition matrix A is an N x N  circulant 
matrix~3) 

(;o al aN11 
a N  - -  1 a o  " " " a N  - 2 N 1 x " l  

�9 ~ =--circ(ao, al,...,au 1)~--- /=02 aiTliN 
1 a 2  ' "  o / 

(2.2) 
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where ]-/N itself is an N x N circulant matr ix  defined as 

H N -  circ(0, 1, 0,..., 0) (2.3) 

Theorem 2.1.  Let K be a finite field of charac ter  p. IK I = p r  If 
(p, N)= l, HN can be diagonal ized by FN (with elements in the extension 
field of K) 

FTv JHNFN = diag(r/0, r/1 . . . . .  ~N-  l) (2.4) 

where r / j=t ]  j, ( F x ) u =  (1/N1/Z)(tli 1) j i and r/ is an N th  primitive root  of 
unity over  K. 3 

Theorem 2.2.  Let K and / I N  be as before. Suppose  N = r y  with 
(p, r ) =  l. Then H~v is similar to a direct sum of r Jo rdan  blocks,  each of 
size pc x p (  The  eigenvalues of HN, each of which has mult ipl ici ty pt, are 
~0, ~ ..... ~ r -  ~ where ~i = ~ and ~ is an rth primit ive root  of unity. 

Proof. The m i n i m u m  polynomia l  of HN is 

m(HN) = x u -- 1 = (X r -- 1 )P~= d e t ( x I -  HN) (2.5) 

Since (p, r ) =  1, x r -  1 is separable  over  K. Hence,  the Jo rdan  blocks are 
given by Theo rem 2.2. 

Observe  that  Theorem 2.1 is a special case of Theo rem 2.2 when l = 0. 

T h e o r e m  2.3. Let N, p, l, r, and {~}  be as above.  All N x N cir- 
culant matrices A=circ(ao, al,...,aN l) are similar to a direct sum of r 
p~ x pt blocks 

r 1 

A ~ @ A <k/ 
k 0 

where the A(k)s are pt x pZ matr ices given by 

N--1 pl--1 

A(~)= Z a,(~kI+C) ~=- Z bl KIC~ (2.6) 
i--O i = 0  

Here I is a pt  • p~ unit matr ix  and C is a p t  • p~ matr ix  given by (01 
0 1 

C~--  . . .  . . .  

�9 
N - - I  

b(o k) E i - -  = aiG = G 
i=O 

3 Henceforth, a root of unity refers to a root of unity over K 

(2.7) 

(2.8) 
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and h (k) can be written formally as ~j 

b!k)= 1 dJ b(o k) (2.9) 
i j! d(~k)j 

The proof follows directly from Theorem 2.2 and Eq. (2.2). 
In particular, when l = 0, i.e., when (p, N) = 1, all circulant matrices A 

can be diagonalized. 
Now, cons ide r  (A(k)) pt. From (2.6), using the binomial expansion, we 

get 

= Y 
\ i  i = 0  

= 2 P ' I  (2.10) 

where we have used C d =  0 and pB = 0 for all matrices B over the field of 
character p, Hence, A "~ can be diagonalized as 

r - - I  

A p'~ @ 2p'I (2.11) 
i = 0  

Remark. From (2.8), we see that for each k, 2k is an element of the 
extension field of K, K({). If 2 k r  2k has finite order Ik = ord(2k), and 
lk I p n -  1, where n = lcm (q, ordr p). Ord,  p is the least positive integer j 
such that pJ = 1 mad(r). In particular, when q = 1, n = ordr p. 

Definition. The generating polynomial of A = circ(ao,..., a N 1) which 
defines an additive CA through (2.1), is 

N - - I  

a(x)= ~ aix' (2.12) 
i = 0  

Theorem 2.4. An additive CA (2.1) has zero eigenvalue if and only 
if g(x) -- gcd[a(x), x r - 1 ] r 1. The dimension of the eigenspace of A with 
eigenvalue zero is pt deg[g(x) ] .  

ProoL Let g(x) r 1. Since g ( x ) l x  r -  1 and x " -  1 is separable, all the 
roots of g(x), ~&{i= 1, 2,..., deg[g(x) ]  }, are distinct and are roots of 
x r -  1. Since g(x)[a(x) ,  g(~k) = 0 implies a(~k,) = 0. Recall that the eigen- 
value 2k,= a(~k,) by (2.8). Therefore, there are deg[g(x) ]  zero eigenvalues. 
The second part of Theorem 2.4 is a direct corollary of Theorem 2.3. 
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Ao A1 . . -  A [ s _  1 

3. H I G H E R - O R D E R  C A  

In this section we consider N-site, p<state additive CA (with periodic 
boundary conditions) whose time-evolution is non-Markovian, i.e., the 
state of the CA at time t depends on the states at the s(/>2) preceding time 
steps, t - 1 ,  t - 2  ..... t - s .  For simplicity, we consider s-order CA in one 
dimension; the higher dimensional case is similar and can be treated 
analogously (see next section). We provide an algorithm for computing the 
state transition diagram explicitly. The conditions under which the class of 
CA rules are reversible, i.e., all states belong to cycles, are established: these 
depend on the influence of the state at time t - s  only. A general 
Theorem (3.2) regarding the topology of transition diagrams is proved. 
The fraction of the states on cycles is computed and explicit expressions for 
cycle lengths and multiplicities in terms of the orders of the nonzero eigen- 
values of the transition matrix are given. 

We discuss the CA in terms of the state vector 4 Y~, defined by 

12Tr(t) = [ ~ r r ( t - s  + 1), ~ T r ( t - s  + 2),..., ~rr(t)]  (3.1) 

where ~ is defined as before. The time evolution of Z; is given by 
~(t + 1) = Al~(t). The transition matrix A has dimension s N  and is given by 

I 

0 I 

(3.2) 

where I is an N x N  unit matrix and Ais are N x N  circulant matrices. 
Ai = circ[a(o i~, a~i),..., a ~  1] describes the influence of ~ ( t -  s + i) on ~(t). 
The time evolution of the CA according to the rule specified by A can be 
represented by a state transition diagram. Let us first recall a few 
definitions. A state transition diagram is a directed graph with the vertices 
of the graph corresponding to the states of the CA. The vertices are connec- 
ted by directed edges which represent the transition between the CA states 
at each time step. (Note that the graph may be a union of disjoint sub- 
graphs). Observe that since the CA rule is deterministic, each vertex has a 
unique successor. However, there may be zero, one, or more predecessors 
for each CA state. Since the number of CA states is finite the CA evolving 
from any initial state must eventually enter a cycle. Thus the transition 
diagram consists of cycles (which may be points!) with trees rooted on the 

4 From now on in this section, N rather than ~ is referred to as a state of the CA. 
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vertices in the cycle. The state at the top of a tree which does not have a 
predecessor will be referred to as a leaf. 

We now explore the topology of the state transition diagram; one 
property of interest is clearly the occurrence of cycles. Since the state vector 
12 at t +  1 is A~2(t), ~ will be on a cycle if the projection of !2 on any 
invariant subspace of A with eigenvalue zero vanishes. We now proceed to 
determine the conditions under which A has no zero eigenvalues and thus 
all states are on cycles�9 

By Theorem 2.3, At is similar to a direct sum of upper triangular 
matrices 

r - - 1  

Ai~  Ai= @ AI k) 
k = 0  

where N = r p  t as before and AI ~) is a p l x p t  matrix given by 
Eqs. (2.6)-(2.9). Moreover, the matrix T which transforms Ai to Ai is the 
same for all i (it is the matrix that transforms HN to its Jordan form). 
Therefore, we have 

I 

T A o A 1 A~, 1 

(3.3) 

The characteristic polynomial of A is obviously the same as that of A. 
Performing elementary operations on x I -  A = B, we obtain 

I '~ ) B ~ . .  (3 .4 )  

0 I 

Bo 

where Bo is an N x N upper triangular matrix given by 

s - - 1  r 1 s - - 1  

Bo= x ' I -  ~ xiAi= xSI - @ ~, xiAl kl (3,5) 
i ~ 0  k = 0  i = 0  
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Since B is upper triangular, the characteristic polynomial of A is the 
product of the diagonal elements of B 0. The diagonal elements of the kth 
block of Bo are all identical and they are simply 

s -  ] 

fk (x)  = x s - ~ x &'~ Ix) (3.6) 
i = 0  

where 21 k), the kth eigenvalue of A i, is given by 

N - - 1  
~ (k) _ /~i _ ~ nIt/;y (3.7) 

u j  b k  

/ - - 0  

as before. 
If 2(o k) r 0 for every k none of the eigenvalues of A are zero. Hence, all 

possible states of CA will be on cycles. If, on the other hand, 2g' = 0 for 
some k, A will have zero eigenvalues. In this case, some states will not be 
on cycles and will appear  only as vertices on trees. 

Combining (3.6) and Theorem 2.4 we have: 

T h e o r e m  3.1. For  additive CA of order s, each state 12 is on a 
cycle (i.e., the rule is reversible) if and only if gcd[ao(x), x r -  l ] = 1, where 
ao(x) is the generating polynomial of Ao. 

When gcd[ao(x ), x r -  1 ] - g ( x ) r  1, there will be states 12 which 
belong to trees rooted on cycles. We now establish a general property of 
trees. 

T h e o r e m  3.2. The trees rooted at all vertices on all cycles of the 
state transition diagram of the CA defined by (3.2) are identical. 

Proof. There exists a transformation matrix Q, such that 
Q-~AQ = J. J is a Jordan matrix. A state vector 52 is on a cycle if ~ belongs 
to an invariant subspace of A with nonzero eigenvalue. Consider the largest 
invariant space V ~ of A with eigenvalue zero. Within V ~ there can still be 
invariant subspaces Yl, J2 ..... Jk, each one of which corresponds to a block 
in Y with zero diagonal elements. For  each subspace Ji there exists a 
generator ui, such that, if the dimension of Ji is di, then ui, Au~, 
A2u~ ..... A 4 -  ~ur162 0 form a basis of the subspace J~ and Ad'ui= O. Thus all 
the elements in V ~ form one tree with the root 52 = 0 and leaves 

k di--1 

Z ~ aj, AJui 
i = I  j ~ 0  

where ajie K(~) and aoi v a 0 for some i 

Now, in the Jordanized basis, the transition matrix can be written as 
A = A o Q A 1 ,  where A 1 is a direct sum of all the Jordan blocks which have 
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nonzero diagonal elements. Correspondingly, ~ = X~o|  and hence, the 
time evolution is given by Y~(t+ 1)=(AoN0)O(A1N1). For each ~2 on a 
cycle, i.e., No-= 0, construct the set 

k A dj- S l =  N01~(All]~t) + ~ ad~ 1,i l l l i l a d , - l , i e K ( ~ ) ,  
i=1 

~ adt 1,ir 0 for some i}, (3.8) 

k di-- 1 
Sd= ~20@(Aldlgl)+ ~ ~ aj.iAJuihaj,ieK(~), 

i=1 j=dt--d 

�9 .. ad,_ d.i 4:0 for some i}, (3.9) 

Then, U~"] ~di) S, is a tree rooted on ~ and is isomorphic to the tree rooted 
on N = 0. Q,E.D. 

Note that the above proof does not depend on the Ais being circulant 
matrices. In fact, Theorem 3.2 is valid for arbitrary (including 
inhomogenous) additive CA irrespective of dimensionality, order, or nature 
of boundary conditions. 

Coro l l a ry .  Let k be the number of Jordan blocks with zero 
diagonal elements in A, and dm be the dimension of the largest of those k 
blocks. The height of the tree rooted at each vertex of a cycle is din. In par- 
ticular, if all the k blocks have the same size dm, the tree is balanced and 
has in-degree IK] k. [A tree is said to be balanced if the number of 
predecessors (in-degree) is the same for all vertices on the tree and the dis- 
tance from each leaf to the root is also the same. The height of a tree is 
defined to be the largest distance from the leaf to the root.] 

Let us define 

g~(x) = gcd[a~(x), g(x)] (3.10) 

gi(x)=gcd[ai(x),g~ l(x)] for i = 2 , 3 , . . . , s - 1  (3.11) 

n;=deg[g~(x)] n ; = 0  and n'o=deg[g(x)] (3.12) 

Clearly, ni=n'i_l-n~ is the number of f j s  which have zero roots of mul- 
tiplicity i. So the total number of zeros on the diagonal of the Jordan form 
of A is 

2 = pl  ~ in i (3.13) 
i~ l  

From the proof of Theorem 3.2, we have: 
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Theorem 3.3. The fraction of the configurations of a CA defined 
by (3.2) that are on cycles is IK[ -x 

Remark. All the states of the CA are in K ~vs while the Jordan forms 
and generating vectors we have been d!scussing belong to K(s Ns. Since K Ns 
is a full lattice in K(~) N', the intersection of K Ns with any subspace V of 
K(~) Ns, which has dimension n, is also a subspace of K NS with dimension n. 

We now obtain the multiplicities and the lengths of the cycles in terms 
of the order of the nonzero eigenvalues of the transition matrix A. By 
solving (3.6) for each k, we get all eigenvalues r of A. Then 
A ~ J =  @i(~i l+ Cd~), where Ca~ is a d~x d i matrix of the form in (2.7). Let 
[ be the smallest integer such that p i >  d, where d is the dimension of the 
largest Jordan block of J; we then have 

A / ~  @ ((~Z + C~,)P'= | ~ I 
i i 

That is, A p~ is similar to a diagonal matrix. Denote the nonzero eigenvalues 
of A by ~(i = 0, 1,..., r'). We have thus shown: 

T h e o r e m  3.4. The possible cycle lengths of a CA defined by (3.2) 
are ord((~),pord((~),..., pt'ord(~f) and their least common multiples, 
pixlcm[ord((i~), ord((i2 ) ..... ord((i~,)](ij=0, 1, 2 ..... r', m = 2 ,  3,...,r' and 
i ~< (D, where l~ is the smallest integer such that pt~ >~ df (d~ is the dimension 
of the Jordan block corresponding to the nonzero eigenvalue (~). 

The maximum cycle length L is 

L = prx lcm[ord(~o), ord(~l) ..... ord(~r,)] 

So we see that all possible cycle lengths are divisors of the maximum 
cycle length L and, in turn, L is a divisor of p r ( p n  I). (See the remark in 
Sect. 2.) 

Knowing the cycle length L(i), its multiplicity m[L(i)] can be com- 
puted. Let KNs= Vo | V where Vo and V are subspaces corresponding to 
zero and nonzero eigenvalues, respectively. Let D i be the dimension of the 
largest subspace Si of V such that the maximum cycle length in S~ is L(i). 
Two cases must be distinguished. If no other cycles with length different 
from L(i) are present in Si, then raiL(i)] is given by (not including the 
trivial one-cycle O) 

rnEL(i)] = [ ( p q ) D i  1]/L(i) (3.14) 

where the numerator is the total number of states (excluding the zero state) 
in the Di-dimensional subspace. If, on the other hand, S~ contains several 
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distinct cycles with length denoted by L(jl), L(j2),..., L(jn) then the mul- 
tiplicity is 

{ }/ m[L(i)] = (pq)D,_ L(jk) rn[L(jk)]-- 1 L(i) (3.15) 
k = l  

4. CA IN H I G H E R  D I M E N S I O N S  

The methods described in previous sections can be applied to arbitrary 
integer dimensions. As an illustrative example, we present the results for 
two-dimensional CA when the state at time t depends only on the state at 
time t - 1 .  Results for one-dimensional CA can be recovered as a special 
case by setting the number of rows equal to 1 while the higher-dimensional 
cases can be treated inductively. The extension to higher-order CA in 
higher dimensions is tedious but straightforward. 

Consider a pq-state CA on a two-dimensional lattice of M rows and N 
columns with periodic boundary conditions. We can represent the state of 
CA by an MN-component  column vector ~(t) with the elements 
representing the state of N sites in each of the M rows successively. Because 
of the periodicity in both directions, the transition matrix A is a circulant 
of circulant matrices 

A = circ(Ao, A1 ..... AM_ 1) (4.1) 

Here, each A~ is an N x N  circulant matrix 5 which describes the 
influence of the ith row on the future 

A ,=  circ[a(o i), a~i),..., a~ )_ ~ ] (4.2) 

A can be written in terms of the M x M matrix HM (defined before) as 

M - - I  

A =  ~ FI~ |  (4.3) 
i - - 0  

First we discuss the simple case (M, p ) =  1 and (N, p ) =  1. Recall that 
HM and A i can both be diagonalized by FM and FN, respectively 
(Theorems 2.1 and 2.3) 

HM~g2=diag(~0 ,  ~l,--., ~M 1) 

Ai ~ Ai = diag[Z(o i), 2~i),..., 2~ ) 1] 
(4.4) 

5 Note that A itself is not necessarily an NM x NM circulant matrix. In three dimensions, the 
transition matrix will be a circulant of circulant of circulant matrices, and so on. 
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where 
~g = ~', ~ is an Mth primitive root of unity and (4.5) 

N 1 

2} o =  Z a~i)q}, r/y=r# (4.6) 
l = 0  

r/is an Nth primitive root of unity. Therefore 

HiM | A~ = (FMf2if~t ~) | (FNAiF~v ~) 

= (FM|174174 1 (4.7) 

and 
M - - 1  

A = (FM| ~, 
i = 0  

Hence, the eigenvalues of A are given by 

( f2i |174 ' (4.8) 

p~ = 
i = 0  " / = 0  i 

N 1 ( ~ = 0 , 1  ..... M - I )  
- Z b/~t/~ (4,9) 

= 0 , 1  ..... N - 1  
l = 0  

where 
M 1 

b ~ =  ~ a}')~ (4.10) 
i = 0  

T h e o r e m  4.1. Let 

N - - 1  

bk(x)= ~ b~kx' (4.1!) 

All configurations of the CA evolving under the rule specified by (4.1) for 
(p, M) = 1 and (p, N) = 1 are on cycles if and only if for k = 0, 1,..., M -  1 

gcd[bk(x), x N -  1] - gk(x) = 1 (4.12) 

Proof. By (4.9), pkj=bk(qj). If (4.12) holds, then bk( t / ; ) r  for allj.  
Therefore, Pkj r 0. Since Pkj is in a finite extension of a finite field, A h = I for 
h = lcmkd[ord(pkj)]. Therefore, all configurations are on cycles. 

Corollary 4.1. The fraction of configurations that are on cycles for 
the CA evolving under the rules specified by (4.1) for (p, M ) =  1 and 
(p, N ) =  1 is 

[ K [  ~ 'MoI  deg[  g i (x ) ]  

822/43/3-4-6 
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Now,  consider the case (p, N ) ~  1, (p, M ) r  1. Let 6 M =  sp k, N= rp t, 
and (s, p)  = (r, p)  = 1. By Theo rem 2.3, all Ai can be s imul taneously  trans- 
formed to a direct sum of r blocks AI jl each of size p~ x p~ by a nons ingular  
matr ix  T, and  H~t can be t ransformed to a direct sum of s blocks Pj each of 
size pk x pk by S, where AI jl and p} are given by 

N--1 
AIJI= ~ a~)(rljI+C) m (4.13) 

m=0 

and 

P } =  ( I ~ j +  C) i (4.14) 

(Hi= ~]i ~ j~ .  ~ j  and ~/ and ~ are the r th  and sth primit ive roots  of unity, 
respectively). 

Hence 

M-1 
A= ~ (SpiS I)@(TAiT-~) 

i=0 

The diagonal  elements have the same form as (4.9), and so we have: 

C o r o l l a r y  4 .2 .  All configurat ions of the CA evolving under  the 
rule specified by (4.1) are on cycles if and only if for k = 0 ,  1,..., s - 1  

gcd[bk(x), x ' -  1 ] - gk(x)= 1 

2 i = 0  deg[gi(x)] Obviously,  the number  of p~ which are zero is given by s-1  
and each zero has degeneracy p k + (  So we have: 

C o r o l l a r y  4 .3 .  The fraction of the states that  are on cycles for the 
CA evolving under  the rule specified by (4.1) is IKI - ; ;  where 

s--1 
)=pl+k ~ d e g [ g , ( x ) ]  

i=0 

Theorem 4.2 .  The  trees rooted  at all vertices on all cycles of the 
state t ransi t ion d iagram of the CA evolving under  the rule specified by 
(4.1) are identical. 

6The cases (a) (p, N)= (p, M) = l, (b) (p, M) ~ (p, N) = l, and (c) (p, N) ~ (p, M) = l 
correspond to (a) l = k = 0, (b) k ~ l = 0, and (c) 1 :~ k = 0, respectively. 
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The proof is exactly the same as for Theorem 3.2. The structure of the 
trees is given exactly as in the Corollary in Section 3. 

We now determine the lengths of cycles. Note that 

)1 A ~  A =  ~ | AI m) (4.16) 
i =  n 0 

Since Pj and AI m) are upper triangular blocks, A is also an upper triangular 
matrix. Therefore 

A ~ A = @ | AI m) 
, =  / = 0 t 0 J 0 

s 1 

- @ A/ (4.17) 
/ =  0 

The diagonal elements of A are eigenvalues p/,, of A where 

p j,.. = ,1,". 
i = 0  t 0 

As in the higher-order CA case, if [ is the smallest integer such that 
p~>~d where d is the dimension of the largest Jordan block of A, A pi is 
similar to a diagonal matrix. 

We therefore, have, 

T h e o r e m  4.3. The possible cycle lengths of a CA evolving under 
the rule specified by (4.1) are pi times the orders of the nonzero 
eigenvalues 7 of A, pi ord(pjm). (i<~ ljm. li,~ is the smallest integer such that 
ptjm ~> di where di is the dimension of the Jordan block corresponding, to 
Pjm) and their least common multiples 

i x ( i i =  0, 1,"', s ' --  11) 
P lcm[~ ~ ~ ji=O, 1 ..... r'-- 

(s'r' is the total number of distinct nonzero eigenvalues and i~<[). The 
maximum cycle length L is L=pix lcm[ord(Po0) ,  ord(po~) ..... 
o r d ( p , ,  l r,-1)]- Again, the possible cycle lengths are divisors of L, and L 
is a divisor of pr(p~_ 1), where ~=lcm(q, ordr p, ord, p). 

The multiplicities of cycles can be worked out exactly as in Section 3. 

7 Since pj,, --* PC,, is a Frobenius automorphism of K(~, ~/), the order of pf,, is the same as that 
of Pjm" 
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As an illustrative example  we have worked  out the multiplicities and 
lengths of cycles of a CA on a two-dimens ional  square lattice of  size N x N 
(with N up to 22) with the following rule 

a(i,y)(t+l)=a(i+l,j)(t)+au_l,y)(t)+a(ij+l)(t)+a(i,j_t)(t)mod2 (4.18) 

The results are displayed in Table  I. The requisite factorizat ion of 
polynomials  was carried out  using M A C S Y M A .  

Table I. Cycle Length L and Mult ipl ici ty M for 
N x N  Lattice wi th  Rule defined in (4.18) ~ 

N ELI: M 

3 [1]: 
4 [1]: 
5 [1]: 
6 Eli: 
7 [1]: 
8 [1]:  
9 [1]: 

10 [1]: 
[6]: 

11 [ I ] :  
12 [1]: 

(4, o) 
(0, o) 
(8,0); [3]:  (8,0)(4, 1)(2, 1) 
(8,0); [2]:  (8, - 1 ) ( 7 , 0 )  
(0, 0); [7]: (36, -1)/(3, -1 )  
(0, 0) 
(4, 0); E7]: (60, - 1 )(4, 0)/(3, - 1 ) 
(16, 0); [2]:  (16, - 1)(15, 0); [33: (16, 0)(16, - 1)/(1, 1); 
(48, - ( 1 7 ,  -1 ) ) (15 ,  0)/(1, 1) 
(0, 0); [31]: (100, - 1)/(5, - 1) 
(16, 0); [2]:  (16, -1 ) (15 ,  0); [4]:  (32, --1)(30, 0) 

13 [1]: (0, 0); [7]: (24, --1)/(3, --1); [21]: (48, -1)(24, 0)/(3, -1)(1,  1); 
[63 ]: (72, 0)(72, -- 1 )/(6, -- 1 ) 

14 [1]: (0,0); [7]: (72, --1)/(3, --1); [14]: (72, --1)(71, 0)/(3, --1) 
15 [1] : (12,0) ;[3] : (40,--1)(12,0) /(1,1) ; [5] : (64,--1)(12,0) /(2,1) ;  

[15]: (184, --(64, (40, -- 1)))(12, 0)/(4, - 1) 
16 [1]: (0,0) 
17 [1 ]: (16, 0); [3]: ( 4 8 , -  1)(16, 0)/(1, 1); [5]: (80,-1)(16,0)/(2,1);  

[15]: (240, - (80,  (48, --1)))(16, 0)/(4, - 1 )  
18 [1]: (8,0); [2]: (8, -1)(7,  0); [7]: (120, -1)(8,0)/(3, -1 ) ;  

[14]: (248, -(120, (8, - 1)))(7, 0)/(3, - 1) 
19 [1]: (0,0); [511]: (324, -1)/(9, - 1 )  
20 [1 ] : (32 ,0 ) ; [2 ] : (32 , -1 ) (31 ,0 ) ; [3 ] : (32 ,0 ) (32 , -1 ) / (1 ,  1); 

[4]: (64, -1)(62, 0); [6]: (96, - (33,  -1))(31, 0)/(1, 1); 
[12]: (192, --(65, - 1))(62, 0)/(1, 1) 

21 Eli: (4, 0); [7]: (84, -1)(4,  0)/(3, -1 ) ;  E9]: (48, -1)(4,  0)/(3, 1); 
[21]: (88, 0)(24, l)(12, 1)(6, 1)(1, t); 
[63]: (396, -(132, (48, -1)))(4,0)/(6, - 1 )  

22 [1]: (0, 0); E31]: (200, -1)/(5,  -1 ) ;  [62]: (200, -1)(199,0)/(5, - 1 )  

a The notation (a, b) in the table means 28+ b. For example, for N =  10, [6]: (48, - (17,  - 1 ) )  
(15, 0)/(1, 1) means that the multiplicity of 6-cycle is (248- 217+ 1)215/3. 
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In summary, we have shown that in order to compute the state trans- 
ition diagram one simply finds the Jordan form J of the transition 
matrix A. Then the order of the nonzero diagonal elements of J (eigen- 
values of A) yields the cycle lengths. To decide whether a state ~ is on a 
cycle or how far it is away from a cycle, one needs to know the matrix 
which transforms A to J. The state ~ is on a tree if it has nonzero com- 
ponents in the zero-eigenvalue subspace. This can be determined easily by 
examining ~ in a Jordanized basis. Furthermore, the distance from the root 
can be obtained by considering the projection of ~ onto an appropriate 
basis for the zero-eigenvalue subspace. All the computations are standard 
and the number of steps needed is O(N 3) where N is the dimension of the 
transition matrix. Therefore, all additive CA discussed in this paper are 
computationally reducible and their time evolution can be determined 
explicitly. 
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A P P E N D I X  

In this appendix, we illustrate the use of the general formalism 
developed in the paper by determining the state transition diagram for a 
simple rule. We have chosen the one-dimensional nearest-neighbor rood 2 
rule (rule 90 in Ref. 1), i.e., ai(t+l)=ai_l(t)+ai+~(t) r o o d 2  as a 
pedagogical example. We proceed as follows to obtain the state transition 
diagram for a lattice with N =  2lr sites. 

1. Write down the transition matrix and its eigenvalues. 
'The transition matrix A (see (2.2)) for this rule is given in terms of 

a~=a N 1= 1 with the rest of ai's being zero. The eigenvalues of A are 
determined from (2.8): 2k = ~k + ~v -  1 = ~k + ~ ~ (k = 0, 1 ..... N -  1) where 

is an rth primitive root of unity. 

2. Determine the order of the eigenvalues. 
This is done as follows: Given N and hence r, one factorizes x r -  1 on 

GF(2). Xr--1 =fi(x) ' ' ' f , (x) .  Here f,,(x) is an nth degree polynomial 
whose roots are rth primitive roots of unity, i.e., f,,(~) = 0. Then, one finds 
the smallest m such that (2~)m=l modf,(~.)  (Since mJ2"-1, one only 
needs to try those integers which are factors of 2 " -  1). The order of 2~ is 
given by m. 
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For example, let N =  15. Factorizing X Is - 1  gives n = 4 and f 4 ( x ) =  
x 4 + x +  1. Since 2 n -  1 = 15, the order of 2k can only be 1, 3, 5 or 15. For 
~1=~_.~_ ~ 1 it turns out ) [15=lmodf4(~) .  Therefore, ord( ; t l )=15.  
Similarly, one can find the orders of the rest of the eigenvalues. The results 
are: 2o = 0, two eigenvalues have order one (i.e., nx, the number of order 
one eigenvalues, is 2), four have order three (n3 = 4) and eight have order 
fifteen (n15 = 8). 

3. Determine the Jordan form of A, cycle lengths and dimension of 
subspace corresponding to various cycles. 

For  N--- 15, A can be diagonalized (Theorem 2.1), so the cycle lengths 
are simply given by the order of 2's, i.e., 1, 3, and 15 (Theorem 4.3). The 
dimension D e of the subspace which corresponds to cycle of length i is 
calculated as follows (see the end of Sec. 3). D l = n l = 2 ,  D 3 = n l  §  
and D15 = n l  +n3 +n15= 14. 

The state transition diagram follows from the above. Since there is one 
zero eigenvalue (dm = 1), the rule is irreversible. Thus the height of the tree 
rooted on each vertex of cycles is one (corollary in Sec. 3). The fraction of 
states which are on cycles is p--dm~_ 2--1 (corollary 4.3). The multiplicity of 
cycles are given by (3.14) and ( 3 . 1 5 ) : m ( 1 ) = 2 2 - 1 = 3 .  m(3 )=  
[ 2 6 - m ( 1 )  - 1 ] / 3 = 2 0  and m ( 1 5 ) = [ 2 ~ 4 - 3 m ( 3 ) - m ( 1 )  - 1 ] / 1 5 = 1 0 8 8 .  
Including the trivial one-cycle corresponding to the zero state, the mul- 
tiplicity of cycles of length one is m(1 ) + 1 = 4. 

Similarly, one can work out the even N case. If N =  2 t' r, we get the 
same eigenvalues as in N = r  except that in this case the degeneracy of 
eigenvalues are increased by a factor 2( For  example, for N =  30 = 2 '  15, 
the cycle lengths are = 1, 3, 15, 2 x 1, 2 x 3, 2 x 15 while for N =  60 = 22. 15, 
the lengths a r e = l ,  3, 15, 2 x l ,  2 x 3 ,  2x15 ,  4 x l ,  4 x 3 ,  4 x 1 5  
(Theorem 4.3). For  N = 3 0 ,  the dimension of zero-eigenspace dm is 2. 
Therefore, the height of each tree is 2 and the fraction of states which are 
on cycles is p am= 2 2. The multiplicity of each cycle length is given by 
(3.14) and (3.15) with D 1 = 2 ,  D2=4 ,  D 3 = 6  , D6=12 ,  D~5=14 and 
D3o -~ 28. 
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